(54) COMPOSITION & METHOD FOR ALTERING LEVELS OF OR SENSITIVITY TO ADENOSINE WITH A DEHYDROEPANDROSTERONE &/OR A UBiqUINONE

(75) Inventor: Jonathan W. Nyce, Greenville, NC (US)

(76) Assignee: East Carolina University, Greenville, NC (US)

(45) Date of Patent: Dec. 30, 2003

(10) Patent No.: US 6,670,349 B1

(21) Appl. No.: 09/488,236

(22) Filed: Jan. 20, 2000

Related U.S. Application Data

(62) Division of application No. 08/861,962, filed on May 22, 1997, now Pat. No. 6,087,351, which is a division of application No. 08/393,863, filed on Feb. 24, 1995, now Pat. No. 5,660,835.

(51) Int. Cl.7 A61K 31/56; A61K 31/12

(52) U.S. Cl. 514/178; 514/688

(58) Field of Search 514/178, 688

References Cited

U.S. PATENT DOCUMENTS

4,393,066 A 7/1983 Garrett et al. 424/251
4,499,064 A 2/1985 Shive 424/21
4,575,498 A 3/1986 Holmes et al. 514/43
4,628,052 A * 12/1986 Peat 514/171
4,920,115 A * 4/1990 Nestler et al. 514/178
4,931,441 A 6/1990 Lawrence 514/249
5,059,595 A 10/1991 Le Grazie 424/468
5,118,505 A 6/1992 Kiltringer 424/195,1
5,173,488 A 12/1992 Haeger 514/249
5,177,076 A 1/1993 Nijkirk et al. 514/249
5,270,305 A 12/1993 Palmer 514/171
5,538,734 A 7/1996 Le Grazie 424/436
5,767,278 A 6/1998 Gaeta et al. 514/178

FOREIGN PATENT DOCUMENTS

WO WO93/16704 * 9/1993

OTHER PUBLICATIONS

Sharma et al., Cancer Research, 1994; 54(22): 5848–5855.*

(List continued on next page.)

Primary Examiner—Sreeni Padmanabhan
Assistant Examiner—San-ming Hui
(74) Attorney, Agent, or Firm—Albert P. Hallain; Howrey Simon Arnold & White, LLP

(57) ABSTRACT

A method of treating adenosine depletion in a subject in need of such treatment is disclosed. The method comprises administering to the subject folic acid or a pharmaceutically acceptable salt thereof in an amount effective to treat adenosine depletion. A method of treating asthma in a subject in need of such treatment is also disclosed. The method comprises administering to the subject dehydroepiandrosterone, analogs thereof, or pharmaceutically acceptable salts thereof in an amount effective to treat asthma.

70 Claims, No Drawings
OTHER PUBLICATIONS

Coleridge et al.; “Intravenous aminophylline confers no benefit in acute asthma treated with intravenous steroids and inhaled bronchodilators”; Medicine, 23:348–354 (1993).

Pashko et al. Inhibition of 7,12-dimethylbenz(a)anthracene-induced Skin Papillomas and Carcinomas by Dehydroepiandrosterone and 3-beta-methyl-androst-5-en-17-one in mice. Cancer Res. 45(1):164–6.*

* cited by examiner
1 COMPOSITION & METHOD FOR ALTERING LEVELS OF OR SENSITIVITY TO ADENOSINE WITH A DEHYDROEPANDROSTERONE &/OR A UBQUITONE

RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 08/381,962, filed by the present inventor May 22, 1997, now U.S. Pat. No. 6,087,351 allowed Oct. 20, 1999; which in turn is a divisional of U.S. patent application Ser. No. 08/393,863, filed by the present inventor Feb. 24, 1995, now U.S. Pat. No. 5,660,835.

The work leading to this invention was made at least in part with U. S. Government support under National Cancer Institute Grant No. CA47217. The U.S. Government may have rights in this invention.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention concerns itself with a method of treating adenosine depletion by the administration of folic acid or a pharmaceutically acceptable salt thereof. This invention further concerns itself with a method of treating asthma by administering dehydroepiandrosterone, analogs thereof, or their pharmaceutically acceptable salts.

2. Description of the Background

Adenosine is a purine which contributes to intermediary metabolism and participates in the regulation of physiological activity in a variety of mammalian tissues. Adenosine participates in many local regulatory mechanisms, such as those occurring in synapses in the central nervous system (CNS) and at neuroeffector junctions in the peripheral nervous system. In the CNS, inibits the release of a variety of neurotransmitters, such as acetylcholine, noradrenaline, dopamine, serotonin, glutamate, and GABA; depresses neurotransmission; reduces neuronal firing to induce spinal analgesia and possesses anxiolytic properties. See A. Pelleg and R. Porter, "Pharmacotherapy" (2), 157 (1999); J. Daval, et al., "Life Sciences" 49:1435 (1991). In the heart, adenosine suppresses pacemaker activity, slows AV conduction, possesses antiarrhythmic and arrhythmogenic effects, modulates autonomic control and triggers the synthesis and release of prostaglandins. See K. Mullan and M. William, "In addition adenosine and Adenosine receptors" p. 289 (M. Williams, ed. Humana Press, 1990). Adenosine has potent vasodilatory effects and modulates vascular tone. See A. Daiseen et al., "J Drugs Target" 4:608 (1986). Adenosine is currently being used clinically for the treatment of supraventricular tachycardia and other cardiac anoclemics. See C. Chronister, "American Journal of Critical Care" 2(1): 41-47 (1993). Adenosine analogues are being also investigated for use as anticoagulant, anxiolytic and neuroprotective agents. See M. Higgins et al., "Pharmacy World & Science" 16(2): 62-68 (1994).

In view of the foregoing, it is readily apparent that (i) adenosine depletion may lead to a broad variety of deleterious conditions, and that methods of treating adenosine depletion may be an extremely useful means of therapeutic intervention; and (ii) methods of inducing adenosine depletion may also be useful in treating conditions such as asthma.

Folinic acid is an intermediate product of the metabolism of folic acid; the active form into which that acid is converted in the body. Ascorbic acid is required as a necessary factor in the conversion process. Folinic acid has been used therapeutically as an antidote to folic acid antagonists such as methotrexate which block the conversion of folic acid into folic acid. Additionally, folic acid has been used as an anti-anemic (combating folate deficiency). See The Merck Index, Monograph No. 4141 (11Ed. Ed. 1989). The use of folic acid in patients afflicted with adenosine depletion, or in a method to therapeutically elevate adenosine levels in the brain or other organ, has heretofore neither been suggested nor described.

SUMMARY OF THE INVENTION

The present invention is a method of treating adenosine depletion in a subject in need of such treatment which comprises administering to the subject folic acid or a pharmaceutically acceptable salt thereof in an amount effective to treat the adenosine depletion. The method may be applied to subjects afflicted with steroid-induced adenosine depletion, subjects afflicted with anxiety, subjects afflicted with a wasting disorder, or subjects afflicted with any other disorder attributable to adenosine depletion, or where an increase in adenosine levels would be therapeutically beneficial.

The present invention also relates to the use of folic acid or a pharmaceutically acceptable salt thereof for the preparation of a medicament for treating adenosine depletion in a subject in need of such treatment, as set forth above.

The present invention, moreover, relates to method of treating asthma in a subject in need of such treatment by administering to the subject dehydroepiandrosterone, an analog thereof, or a pharmaceutically acceptable salt thereof, in an amount effective to treat asthma.

The present invention also relates to use of dehydroepiandrosterone, an analog thereof, or a pharmaceutically acceptable salt thereof, for the manufacture of a medicament for treating asthma.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The method of treating adenosine depletion disclosed herein may be used to treat steroid-induced adenosine depletion; to stimulate adenosine synthesis and thereby treat or control anxiety (e.g., in treating premenstrual syndrome); to increase weight gain or treat wasting disorders; and to treat other adenosine-related pathologies by administering folic acid. Thus, the term “adenosine depletion” is intended to encompass both conditions where adenosine levels are depleted in the subject as compared to previous adenosine levels in that subject, and conditions where adenosine levels are essentially the same as previous adenosine levels in that subject but, because of some other condition or alteration in that patient, a therapeutic benefit would be achieved in the patient by increased adenosine levels as compared to previous levels. Preferably, the method is carried out on patients where adenosine levels are depleted as compared to previous adenosine levels in that subject. The present invention is
concerned primarily with the treatment of human subjects but may also be employed for the treatment of other mammalian subjects, such as dogs and cats, for veterinary purposes.

Folinic acid and the pharmaceutically acceptable salts thereof (hereafter sometimes referred to as "active compounds") are known, and can be made in accordance with known procedures. See generally The Merck Index, Monograph No. 4141 (11th Ed. 1989); U.S. Pat. No. 2,741,608.

Pharmacologically acceptable salts should be both pharmacologically and pharmaceutically acceptable. Such pharmacologically and pharmaceutically acceptable salts can be prepared as alkaline metal or alkaline earth salts, such as sodium, potassium or calcium salts, of the carboxylic acid group of Folinic acid. The calcium salt of folic acid is a preferred pharmaceutically acceptable salt.

The active compounds are preferably administered to the subject as a pharmaceutical composition. Pharmaceutical compositions for use in the present invention include those suitable for inhalation, oral, topical, (including buccal, sublingual, dermal and intraocular) parenteral (including subcutaneous, intradermal, intramuscular, intravenous and intraarticular) and transdermal administration. The compositions may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art.

Compositions suitable for oral administration may be prepared in discrete units, such as capsules, cachets, lozenges, or tablets, each containing a predetermined amount of the active compound, as a powder or granules; as a solution or a suspension in an aqueous or non-aqueous liquid or as an oil-in-water or water-in-oil emulsion. Such compositions may be prepared by any suitable method of pharmacy which includes the step of bringing into association the active compound and a suitable carrier. In general, the compositions of the invention are prepared by uniformly and intimately admixing the active compound with a liquid or finely divided solid carrier, or both, and then, if necessary, shaping the resulting mixture. For example, a tablet may be prepared by compressing or molding a powder or granules containing the active compound, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing, in a suitable machine, the compound in a free-flowing form, such as a powder or granules optionally mixed with a binder, lubricant, inert diluent, and/or surface active dispersing agent(s). Molded tablets may be made by molding, in a suitable machine, the powdered compound moistened with an inert liquid binder. Compositions for oral administration may optionally include enteric coatings known in the art to prevent degradation of the compositions in the stomach and provide release of the drug in the small intestine.

Compositions suitable for buccal (sub-lingual) administration include lozenges comprising the active compound in a flavored base, usually sucrose and acacia or tragacanth; and pastilles comprising the compound in an inert base such as gelatin and glycerin or sucrose and acacia.

Compositions suitable for parenteral administration comprise sterile aqueous and non-aqueous injection solutions of the active compound, which preparations are preferably isotonic with the blood of the intended recipient. These preparations may contain anti-oxidants, buffers, bacteriostats and solutes which render the compositions isotonic with the blood of the intended recipient. Aqueous and non-aqueous sterile suspensions may include suspending agents and thickening agents. The compositions may be presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example, saline or water-for-injection immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described.

Compositions suitable for topical application to the skin preferably take the form of an ointment, cream, lotion, paste, gel, spray, aerosol, or oil. Carriers which may be used include vaseline, lanoline, polyethylene glycols, alcohols, transdermal enhancers, and combinations of two or more thereof.

Compositions suitable for transdermal administration may be presented as discrete patches adapted to remain in intimate contact with the epidermis of the recipient for a prolonged period of time. Compositions suitable for transdermal administration may also be delivered by iontophoresis (see, e.g., Pharmaceutical Research 3, 318 (1986)) and typically take the form of an optionally buffered aqueous solution of the active compound.

Dosage will vary depending on age, weight, and condition of the subject. Treatment may be initiated with small dosages less than optimum dose and increased until the optimum effect under the circumstances is reached. In general, the dosage will be from 1, 5, 10 or 20 mg/kg subject body weight, up to 100, 200, 500 or 1000 mg/kg subject body weight. Currently, dosages of from 5 to 500 mg/kg are preferred, dosages of from 10 to 200 mg/kg are more preferred, and dosages of from 20 to 100 mg/kg are most preferred. In general, the active compounds are preferably administered at a concentration that will afford effective results without causing any unduly harmful or deleterious side effects, and may be administered either as a single unit dose, or if desired, in convenient subunits administered at suitable times throughout the day.

Also disclosed herein is a method of reducing adenosine levels, particularly in the lung, liver, heart and brain and, therefore, of treating asthma, particularly non-steroid dependent asthma, by administering to a subject in need of such treatment dehydropiandrosisterone (DHEA), an analog thereof, or a pharmaceutically acceptable salt thereof, in an amount effective to inhibit or control asthma to that subject. Examples of DHEA and analogs thereof that may be used to carry out this method are represented by the formula:

Wherein:
- the broken line represents an optional double bond;
- R is hydrogen or a halogen;
- R₁ is hydrogen or an SO₂ OM group where M is hydrogen, M is sodium, M is a sulphatide group;
Particles comprised of active compound for practicing the present invention should include particles of respirable size: that is, particles of a size sufficiently small to pass through the mouth and larynx upon inhalation and into the bronchi and alveoli of the lungs. In general, particles ranging from about 0.5 to 10 microns in size (more particularly, less than about 5 microns in size) are respirable. Particles of non-respirable size which are included in the aerosol tend to deposit in the throat and be swallowed, and the quantity of non-respirable particles in the aerosol is preferably minimized. For nasal administration, a particle size in the range of 10–500 μm is preferred to ensure retention in the nasal cavity.

Liquid pharmaceutical compositions of active compound for producing an aerosol may be prepared by combining the active compound with a suitable vehicle, such as sterile pyrogen free water. Solid particulate compositions containing respirable dry particles of micronized active compound may be prepared by grinding dry active compound with a mortar and pestle, and then passing the micronized composition through a 400 mesh screen to break up or separate large agglomerates. A solid particulate composition comprised of the active compound may optionally contain a dispersant which serves to facilitate the formation of an aerosol. A suitable dispersant is lactose, which may be blended with the active compound in any suitable ratio (e.g., a 1 to 1 ratio by weight).

Aerosols of liquid particles comprising the active compound may be produced by any suitable means, such as with a nebulizer. See, e.g., U.S. Pat. No. 4,501,729. Nebulizers are commercially available devices which transform solutions or suspensions of the active ingredient into a therapeutic aerosol mist either by means of acceleration of a compressed gas, typically air or oxygen, through a narrow venturi orifice or by means of ultrasonic agitation. Suitable compositions for use in nebulizers consist of the active ingredient in a liquid carrier, the active ingredient comprising up to 40% w/w of the compositions, but preferably less than 20% w/w. The carrier is typically water or a dilute aqueous alcoholic solution, preferably made isotonic with body fluids by the addition of, for example, sodium chloride. Optional additives include preservatives if the composition is not prepared sterile, for example, methyl hydroxybenzoate, antioxidants, flavoring agents, volatile oils, buffering agents and surfactants.

Aerosols of solid particles comprising the active compound may likewise be produced with any solid particulate medicament aerosol generator. Aerosol generators for administering solid particulate medicaments to a subject produce particles which are respirable, as explained above, and generate a volume of aerosol containing a predetermined metered dose of a medicament at a rate suitable for human administration. Examples of such aerosol generators include metered dose inhalers and insufflators.

Ubinquione may be administered concurrently with the DHEA or analog thereof in the methods of treating asthma described above. The phrase “concurrently administering,” as used herein, means that the DHEA or the DHEA analog are administered either (a) simultaneously in time (preferably by formulating the two together in a common pharmaceutical carrier), or (b) at different times during the course of a common treatment schedule. In the latter case, the two compounds are administered at times sufficiently close for the ubiquinone to ubiquinone depletion in the lungs (and heart) of the subject and thereby counterbalance any deterioration of lung (and heart) function that may result from the administration of the DHEA or the analog thereof.
The term “ubiquinone”, as used herein, refers to a family of compounds having structures based on a 2,3-dimethoxy-5-methylbenzoquinone nucleus with a variable terpenoid acid chain containing on to twelve mono-ununsaturated trans-isoprenoid units. Such compounds are known in the art as “Coenzyme Qn”, in which n equals 1 to 12. These compounds may be referred to herein as compounds represented by the formula:

![Chemical Structure](Attachment)

wherein n=1 to 10. Preferably, in the method of the invention, the ubiquinone is a compound according to formula given above, wherein n=6 to 10 (e.g., Coenzymes Q6., Q7.) and most preferably wherein n=10 (i.e., Coenzyme Q10).

Where the ubiquinone is formulated with a pharmaceutically acceptable carrier separately from the DHEA, analog thereof, or salt thereof (e.g., where the DHEA, analog thereof or salt thereof is administered to the lungs of the subject, and the ubiquinone is administered systemically) it may be formulated by any of the techniques set forth above.

In general, the ubiquinone is administered in an amount effective to offset ubiquinone depletion in the lungs and heart of the subject induced by the DHEA, analog thereof, or salt thereof, and the dosage will vary depending upon the condition of the subject and the route of administration. The ubiquinone is preferably administered in a total amount per day of about 1 to 1200 mg/kg body weight, more preferably about 30 to 600 mg/kg, and most preferably about 50 to 150 mg/kg. The ubiquinone may be administered once or several times a day.

The following examples are provided to more fully illustrate the present invention and should not be construed as restrictive thereof. In the following examples, DHEA means dehydroepiandrosterone, s means seconds, mg means milligrams, kg means kilograms, kW means kilowatts, MHz means megahertz, and nmol means nanomoles.

EXAMPLES 1 AND 2

Effects of Folinic Acid and DHEA on Adenosine Levels In vivo

Young adult male Fischer 344 rats (120 grams) were administered dehydroepiandrosterone (DHEA) (300 mg/kg) or methyltestosterone (40 mg/kg) in carboxymethylcellulose by gavage once daily for fourteen days. Folinic acid (50 mg/kg) was administered intraperitoneally once daily for fourteen days. On the fifteenth day, the animals were sacrificed by microwave pulse (1.33 kW, 2450 MHz, 6.5 s) to the cranium, which instantly denatures all brain protein and prevents further metabolism of adenosine. Hearts were removed from animals and flash frozen in liquid nitrogen within 10 seconds of death. Liver and lungs were removed en bloc and flash frozen within 30 seconds of death. Brain tissue was subsequently dissected. Tissue adenosine was extracted, derivatized to LN-ethenoadenosine and analyzed by high performance liquid chromatography (HPLC) using spectrofluorometric detection according to the method of Clark and Dar (J. of Neuroscience Methods 25:243 (1988)).

Results of these experiments are summarized in Table 1 below. Results are expressed as the mean±SEM, with P<0.05 compared to control group and P<0.05 compared to DHEA or methyltestosterone-treated groups.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Heart</th>
<th>Liver</th>
<th>Lung</th>
<th>Brain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>30.6±0.6</td>
<td>14.5±1.0</td>
<td>3.3±0.2</td>
<td>0.5±0.4</td>
</tr>
<tr>
<td>(n=12)</td>
<td>(n=12)</td>
<td>(n=6)</td>
<td>(n=12)</td>
<td></td>
</tr>
<tr>
<td>DHEA</td>
<td>6.7±0.5</td>
<td>14.6±1.5</td>
<td>2.3±0.3</td>
<td>0.19±0.01</td>
</tr>
<tr>
<td>(300 mg/kg)</td>
<td>(n=12)</td>
<td>(n=12)</td>
<td>(n=6)</td>
<td>(n=12)</td>
</tr>
<tr>
<td>Methyltestosterone</td>
<td>8.3±1.0</td>
<td>16.5±0.9</td>
<td>N.D.</td>
<td>0.42±0.06</td>
</tr>
<tr>
<td>(40 mg/kg)</td>
<td>(n=6)</td>
<td>(n=6)</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Folinic Acid</td>
<td>12.4±2.1</td>
<td>21.4±2.4</td>
<td>2.4±0.3</td>
<td>0.31±0.03</td>
</tr>
<tr>
<td>(50 mg/kg)</td>
<td>(n=5)</td>
<td>(n=5)</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>DHEA (300 mg/kg) +</td>
<td>11.1±0.6</td>
<td>19.8±1.5</td>
<td>N.D.</td>
<td>0.55±0.09</td>
</tr>
<tr>
<td>Methyltestosterone</td>
<td>(n=5)</td>
<td>(n=5)</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Folinic Acid</td>
<td>9.1±0.4</td>
<td>N.D.</td>
<td>0.60±0.06</td>
<td></td>
</tr>
<tr>
<td>(50 mg/kg)</td>
<td>(n=6)</td>
<td>N.D.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The results of these experiments indicate that rats administered DHEA or methyltestosterone daily for two weeks showed multi-organ depletion of adenosine. Depletion was dramatic in brain (60% depletion for DHEA, 34% for high dose methyltestosterone) and heart (37% depletion for DHEA, 22% depletion for high dose methyltestosterone).

Co-administration of folinic acid completely abrogated steroid-mediated adenosine depletion. Folinic acid administered alone induce increases in adenosine levels for all organs studied.

The foregoing examples are illustrative of the present invention, and are not to be construed as limiting thereof. The invention is defined by the following claims, with equivalents of the claims to be included therein.

That which is claimed is:

1. A pharmaceutical composition, comprising a carrier, a folic acid, or a pharmaceutically or veterinarily acceptable salts thereof, and an amount of an active agent effective for altering levels of, or sensitivity to, adenosine in a subject's tissue(s), or prophylaxis or treatment for .
9.

3,4-Dihydroxy-3,5,6-trimethyl-tetrahydro-pyran-2-carboxylic acid; or a ubiquinone or pharmaceutically or veterinarily acceptable salt thereof, wherein the ubiquinone has the chemical formula

wherein n=1 to 12.

2. The composition of claim 1, wherein in the (COO₃)ₙ(II), n=1 to 10.

3. The composition of claim 1, wherein in the (COO₃)(II), n=6 to 10.

4. The composition of claim 3, wherein in the (COO₃)(II), n is 10.

5. The composition of claim 4, comprising up to about 40% w/w active agent.

6. The composition of claim 5, comprising less than about 20% w/w active agent.

7. The composition of claim 1, wherein the compound of chemical formula (I) is dihydroepiandrosterone, wherein R and R¹ are each hydrogen and the broken line represents a double bond.

8. The composition of claim 1, wherein the compound of chemical formula (I) is 16-alpha-bromoepiandrosterone, wherein R is Br, R¹ is H, and the broken line represents a double bond.

9. The composition of claim 1, wherein the compound of chemical formula (I) is 16-alpha-fluoro epiandrosterone, wherein R is F, R¹ is H and broken line represents a double bond.

10. The composition of claim 1, wherein the compound of chemical formula (I) is dehydroepiandrosterone sulfate, wherein R is H, R¹ is SO₃OM and M is a sulfate group as defined above, and the broken line represents a single bond.

11. The composition of claim 1, wherein the compound of chemical formula (I), R is halogen selected from Br, Cl or F, R¹ is H, and the broken line represents a double bond.

12. The composition of claim 1, wherein the carrier comprises a pharmaceutically or veterinarily acceptable carrier.

13. The composition of claim 1, wherein the compound of chemical formula (I) is 16alpha-fluoro epipandrosterone.

14. The composition of claim 1, wherein the compound of chemical formula (I) is dehydroepiandrosterone, 16alpha-bromoepiandrosterone, 16alpha-fluoro epipandrosterone, ethylcholanolone, dehydroepiandrosterone sulfate or pharmaceutically or veterinarily acceptable salts thereof.

15. The composition of claim 1, wherein the carrier comprises a pharmaceutically or veterinarily acceptable carrier.

16. The composition of claim 1, wherein the carrier is a gaseous, solid or liquid carrier.

17. The composition of claim 16, further comprising an agent selected from the group consisting of preservatives, antioxidants, flavoring agents, volatile oils, buffering agents, dispersants and surfactants.

18. The composition of claim 16, which is a systemic or topical formulation.

19. The formulation of claim 18, min the form of an oral, inhalable, nasal, topical, parenteral or transdermal formulation.

20. The formulation of claim 18, in the form of a buccal, sublingual, dermal, intraocular, subcutaneous, intradermal, intramuscular, intravenous or intracutaneous formulation.

21. The formulation of claim 19, which is in the form of capsules, cachets, lozenges, tablets, powder, granules, solutions, suspensions or emulsions.

22. The formulation of claim 19, which is a solution, suspension or emulsion selected from aqueous or non-aqueous liquid solutions or suspensions or oil-in-water or water-in-oil emulsions.

23. The formulation of claim 19, which is a buccal or sub-lingual formulation in the form of lozenges further comprising a flavoring agent of sucrose, acacia or tragacanth; or pastilles further comprising an inert base of gelatin, glycerin, sucrose or acacia.

24. The formulation of claim 21, further comprising an enteric coating.

25. The formulation of claim 19, which is a parenteral formulation.

26. The formulation of claim 19, in injectable form.

27. The formulation of claim 26, comprising a solution or suspension that further comprises antioxidants, flavoring agents, preservatives, volatile oils, dispersants, surfactants, buffers, bacteriostatic agents or solutes which render the solution or suspension isotonic with the blood of any intended recipient.

28. The injectable formulation of claim 27, wherein the solution and suspension is sterile aqueous or non-aqueous injection solutions or suspensions, which further comprises suspending agents or thickening agents.

29. The composition of claim 1, in bulk.

30. The composition of claim 1, in single or in multi-dose form.

31. The composition of claim 30, wherein the single or multi-dose form is provided in sealed ampules or vials.

32. The composition of claim 1, which is freeze-dried or lyophilized.

33. The formulation of claim 19, which is in the form of an ointment, cream, lotion, paste, gel, spray, aerosol or oil; and further comprises vaseline, lanoline, polyethylene glycols, alcohols or transdermal enhancers.

34. The formulation of claim 19, which is a transdermal formulation in the form of a patch.

35. The formulation of claim 19, which is an iontophoretic solution or suspension which further comprises a buffer.

36. The formulation of claim 19, which is an inhalable or nasal formulation.
37. The formulation of claim 1, comprising an inhalable formulation comprising particles of the active agent about 0.5 μm to about 10 μm in size.

38. The formulation of claim 37, comprising an inhalable formulation comprising particles of the active agent less than about 5 μm in size.

39. The formulation of claim 36, comprising a nasal formulation comprising particles of the active agent about 10 μm to about 500 μm in size.

40. The formulation of claim 16, wherein the carrier comprises a hydrophobic carrier.

41. A composite comprising the formulation of claim 16, as a delivery device.

42. The composite of claim 41, wherein the delivery device comprises an aerosol generator.

43. The composite of claim 42, wherein the aerosol generator comprises an inhalator which delivers individual pre-metered doses of the formulation.

44. The composite of claim 43, wherein the inhalator comprises a nebulizer or insufflator.

45. The composite of claim 41, wherein the delivery device comprises a compression inhalator, and the formulation comprises a suspension or solution in an aqueous or non-aqueous liquid or an oil-in-water or water-in-oil emulsion.

46. The composite of claim 41, wherein the composition is provided in a capsule or cartridge.

47. The composites of claim 46, wherein the capsule or cartridge is a pierceable or openable capsule or cartridge with solid particles of the agent.

48. An in vivo method of prophylaxis or treatment for a disorder or condition associated with altered levels of, or sensitivity to, adenosine, in a subject's tissue(s), or with bronchoconstriction, or asthma, comprising administering to a subject in need of treatment the pharmaceutical composition of claim 1.

49. The method of claim 48, wherein the disorder or condition is a disorder or condition of the heart, liver, lung(s) or brain.

50. The method of claim 49, wherein the disorder or condition is bronchoconstriction or asthma.

51. The method of claim 48, wherein the folic acid, or a pharmaceutically, or veterinarily acceptable salt thereof, is administered in an amount about 1 to about 1,000 mg/kg body weight.

52. The method of claim 51, wherein the folic acid, or a pharmaceutically, or veterinarily acceptable salt thereof, is administered in an amount about 5 to about 500 mg/kg body weight.

53. The method of claim 48, wherein the dehydroepiandrosterone of chemical formula (I) or salt thereof, is administered in an amount of about 1 to about 3600 mg/kg body weight.

54. The method of claim 48, wherein the dehydroepiandrosterone of chemical formula (I) or salt thereof is administered in an amount of about 5 to about 1800 mg/kg.

55. The method of claim 48, wherein the dehydroepiandrosterone of chemical formula (I) or salt thereof is administered in an amount of about 20 to about 100 mg/1 kg.

56. The method of claim 48, in the active agent is a ubiquinone of chemical formula (II) or salt thereof, and administered in an amount of about 1 to about 1200 mg/kg body weight.

57. The method of claim 56, wherein the ubiquinone of chemical formula (II) or salt thereof is administered in an amount of about 50 to about 150 mg.

58. The method of claim 56, wherein the disorder or condition is non-steroid administration-associated asthma or bronchoconstriction, and the agent comprises a dehydroepiandrosterone of chemical formula (I), or dehydroepiandrosterone salt thereof.

59. The method of claim 59, wherein the dehydroepiandrosterone salt of chemical formula (I) comprises dehydroepiandrosterone sulfate.

60. The method of claim 48, wherein the carrier comprises a pharmaceutically or veterinarianly acceptable carrier.

61. The method of claim 48, wherein the ubiquinone of chemical formula (II) or salt thereof and the dehydroepiandrosterone of chemical formula (I) or salt thereof are administered concurrently.

62. The method of claim 62, wherein the dehydroepiandrosterone of chemical formula (I) or salt thereof and the ubiquinone of chemical formula (I) or salt thereof are administered in the same formulation.

63. The method of claim 62, wherein the dehydroepiandrosterone of chemical formula (I) or salt thereof and the ubiquinone of chemical formula (II) or salt thereof are administered in the same formulation.

64. The method of claim 62, wherein the dehydroepiandrosterone of chemical formula (I) or salt thereof and the ubiquinone of chemical formula (II) or salt thereof are administered concurrently with the agent.

65. The method of claim 65, wherein the dehydroepiandrosterone of chemical formula (I) or salt thereof and the ubiquinone of chemical formula (II) or salt thereof are administered in the same formulation as the folic acid or salt thereof.

66. The method of claim 65, the dehydroepiandrosterone of chemical formula (I) or salt thereof, the ubiquinone of chemical formula (II) or salt thereof, and the folic acid or salt thereof are administered in different formulations.

67. The method of claim 45, wherein the subject is a human.

68. The method of claim 45, in the subject is a non-human animal.

69. The method of claim 45, wherein prophylactic method.

* * * * *