ECU Logo
 
Department of Biology






Name: Elizabeth Ables
Title: Assistant Professor
Area of Study: Cell Biology, Developmental Biology
Phone:
Lab:
252-328-9770
252-737-4763 S&T 575
Fax: 252-328-4178
E-mail: ablese@ecu.edu
Office: S&T 515
Address: East Carolina University

Department of Biology;
Mailstop 551

Greenville, NC 27858
Elizabeth Ables 


Education:

B.S., St. Andrews Presbyterian College, 1999

M.S., University of North Carolina at Wilmington, 2001

Ph.D., Vanderbilt University, 2007

Post-Doctoral Training, Johns Hopkins University, 2012

Lab Website:

http://blog.ecu.edu/sites/ablese/

Research Interests:

My research seeks to understand a fundamental question in stem cell biology:how do adult stem cells sense and respond to changes in whole-body physiology?To meet changing physiological demand, stem cells are particularly dependent upon organismal nutrient sensing systems to balance their unique properties of self-renewal and the production of specialized progeny, allowing for the replacement of cells lost by attrition, regeneration, repair, or remodeling.Stem cell proliferation rates and maintenance of stem cell population size are therefore tightly controlled by the integration of signals from the local environment (or niche) and systemic signals, such as steroid hormones, which fluctuate in response to nutrient intake and other physiological inputs. While many studies have investigated the regulation of stem cells by local signaling pathways, we are only beginning to ascertain the impact of systemic signals on stem cell function.The Drosophila melanogaster ovary, a well-described stem cell-based tissue that responds to external stimuli, is a powerful model system to study the molecular mechanisms controlling stem cell activity in vivo. My long-term research goal is to understand how hormone signaling regulates adult stem cell activity in response to changes in physiological demand. Using well-characterized stem cell populations in Drosophila as models, I take genetic and cell biological approaches to assess in vivo the pivotal role of steroid hormones and their receptors in controlling tissue-specific stem cell behavior.

Prospective Students:

I am currently looking for highly motivated students, eager to learn research skills in genetics, molecular biology, cell biology, and microscopy, to join my research team. If you are interested in obtaining undergraduate research experience or in pursuing graduate education in the Biology Department, please contact me via email to discuss available opportunities.


Publications:

Cyclin E controls Drosophila female germline stem cell maintenance independently of its role in proliferation by modulating responsiveness to niche signals. E. T. Ables and D. Drummond-Barbosa (2013).  Development, 140:530-540. 

In vivocontrol of adult stem cells by a dynamic physiological environment: diet-dependent systemic factors in Drosophila and beyond. E. T. Ables, K. M. Laws, and D. Drummond-Barbosa. Wiley Interdisciplinary Reviews Developmental Biology (2012), 1: 657-674, doi: 10.1002/wdev.48.

Food for thought:neural stem cells on a diet. E. T. Ables and D. Drummond-Barbosa. Cell Stem Cell (2011), 8 (4):352.

The steroid hormone ecdysone functions with intrinsic chromatin remodeling factors to control female germline stem cells in Drosophila. E. T. Ables and D. Drummond-Barbosa. Cell Stem Cell (2010), 7 (5):581.

Multiple, temporal-specific roles for HNF6 in pancreatic endocrine and ductal differentiation. H. Zhang*, E. T. Ables*, C. F. Pope, M. K. Washington, S. Hipkens, A. Means, G. Path, J. Seufert, R. H. Costa, A. B. Leiter, M. A. Magnuson, and M. Gannon.Mechanisms of Development (2009), 126 (11-12):958. *Both authors contributed equally to this work.

Gene expression profiling of a mouse model of pancreatic islet dysmorphogenesis. L. W. Crawford,* E. T. Ables*, Y. A. Oh, B. Boone, S. Levy, and M. Gannon. Public Library of Science ONE (2008), 3 (2):e1161. *Both authors contributed equally to this work.

pdx1function is specifically required in embryonic cells to generate appropriate numbers of endocrine cell types and maintain glucose homeostasis. M. Gannon, E. T. Ables, L. Crawford, D. Lowe, M. F. Offield, M. A. Magnuson, and C. V. E. Wright. Developmental Biology (2008), 314 (2):406.

Maintenance of Hnf6 in postnatal islets impairs terminal differentiation and function of cells. E. Tweedie**, I. Artner, L. Crawford, G. Poffenberger, B. Thorens, R. Stein, A. C. Powers, and M. Gannon.Diabetes (2006), 55 (12):3264. **Ables maiden name.

Purification of a soluble glycoprotein from the uncalcified ecdysial cuticle of the blue crab Callinectes sapidus and its possible role in initial mineralization. E. P. Tweedie**, F. E. Coblentz, and T. H. Shafer. Journal of Experimental Biology (2004), 207 (Pt 15):2589. **Ables maiden name.

Courses Taught:

Cell Biology