Adam Offenbacher

Contact Information

Office: 409 Science & Technology Building
Phone: 252-737-5422
Lab Website:



NIH F32 Postdoctoral Fellow, University of California, Berkeley (2015-2017)

Postdoctoral Fellow, University of California, Berkeley (2013-2015)

Postdoctoral Fellow, Georgia Institute of Technology (2011-2013)

Ph.D., Chemistry, Georgia Institute of Technology (2005-2011)

B.S.,Biochemistry, Ohio Northern University (2001-2005)

Adam R. Offenbacher, Ph.D.

Assistant Professor of Biochemistry

Research Overview

Research in the Offenbacher lab is centered on elucidating the molecular underpinnings of biological catalysis. There are two main areas of research in our lab. First is to uncover how conformational flexibility is related to enzyme catalysis. These details will enrich our understanding of the origins of the enormous catalytic proficiencies of natural enzymes and yield blueprints for future biological catalyst design. The dynamic properties of proteins are also studied in the context of allostery and the molecular basis of mutation linked diseases. Second is to develop novel kinetic and/or spectroscopic probes formechanistic interrogation of proton-coupled electron transfer in enzyme function.

The projects combine interdisciplinary study across fields including enzymology, chemical, molecular and structural biology, and biophysical chemistry.  A focus is centered on training and engaging students in practical laboratory investigations, relevant to modern biochemistry, using various biochemical and structural/biophysical techniques(e.g. protein expression and purification; enzyme kinetics; site-directed mutagenesis; hydrogen deuterium exchange mass spectrometry, HDXMS; vibrational,fluorescence, and electron paramagnetic resonance spectroscopy).

Starting August 2017, the Offenbacher lab will be looking for motivated undergraduate students displaying a willingness and aptitude to learn a range of biochemical and biophysical tools to interrogate the molecular mechanisms of biological catalysts.

Selected Publications

Adam R. Offenbacher, Shenshen Hu, Erin M.Poss, Cody A. M. Carr, Alexander D. Scouras, Anthony T. Iavarone, Ali Palla,Tom Alber, James S. Fraser, and Judith P. Klinman. Hydrogen deuterium exchange uncovers a relationship between distal, solvent exposed protein motions and the thermal activation barrier for catalytic proton-coupled electron tunneling. ACS Cent.Sci. 20173, 570-579.


(Masaki Horitani, Adam R. Offenbacher), Cody A. M. Carr, Tao Yu,Sharon Hammes-Schiffer, Judith P. Klinman, and Brian M. Hoffman. Active site structure of a lipoxygenase-substrate complex from 13C ENDOR spectroscopy reveals structural basis for tunneling properties that underlie C-H activation. J. Am.Chem. Soc. 2017139, 1984-1997.


Adam R. Offenbacher, Brandon C.Polander, and Bridgette A. Barry. An intrinsically disordered photosystem IIsubunit, PsbO, provides a structural template and a sensor of the hydrogen-bonding network in photosynthetic water oxidation. J. Biol. Chem. 2013, 288, 29056-29068.


Bridgette A.Barry, Jun Chen, James Keough, David Jenson, Adam Offenbacher, and Cynthia Pagba. Proton-coupled electron transfer and redox-active tyrosines: Structure and function of the tyrosyl radicals inribonucleotide reductase and photosystem II. J. Phys.Chem. Lett. 2012,3, 543-554.


*For a complete list, click on the link: