ECU Logo
Department of Psychology
Multidisciplinary Studies Program in Neuroscience

neuromain3
 
slant bar

Brainstorm Newsletter PDFs
(downloadable)

Brainstorm Issuu Format
(nice but ad supported viewing)

 
Useful Docs & Forms

Funding/Research Resources



Contact Information
Dr. Tuan Tran, Director

Mult. Studies Program in Neuroscience
Dept. of Psychology, Rawl 225
East Carolina University
Greenville, NC 27858

General Email:
neuroscience@ecu.edu

Multidisciplinary Studies - Neuroscience Concentration

What is Neuroscience?

Neuroscience is a relatively new discipline compared to Biology, Chemistry, and Psychology. However, the study of the brain has been carried out over many centuries. Neuroscience is the study of the nervous system and how it regulates behavior and cognition. Explaining this interaction has been described as one of the last frontiers in the biological sciences by renowned neuroscientist and Nobel Prize Winner, Dr. Eric Kandel. This field is challenging, exciting, and interdisciplinary. The interdisciplinary nature of neuroscience allows scientists, physicians, and clinicians to share a common interest about the nervous system. Central to neuroscience are questions such as:

  • What are the neurobiological substrates of learning and memory?
  • What are the short- and long-term neural consequences of drug abuse?
  • What are the molecular mechanisms underlying disorders such as depression and Alzheimer's disease?
  • How does the brain rewire itself after a traumatic injury?
The list of questions is nearly endless! The very nature of this list of questions changes and grows as we continue to learn more about the workings of the central nervous system.

The Neuroscience Program at ECU
At ECU, Neuroscience is offered as a concentration in the Multidisciplinary Studies Program. The concentration is offered through both the BA and BS degrees. It is designed to provide students with a diverse scientific background that will allow them to pursue a career in neuroscience and a wide variety of other fields. The program is not only designed for students desiring to pursue a career in neuroscience, but is also an excellent program for students desiring a career in medicine or other health-related profession. Indeed, many of the course requirements in the curriculum overlap with the undergraduate courses required by most medical schools (e.g., Biology, Chemistry, Physics).

The curriculum includes a strong core of required biology, chemistry, physics, and psychology courses, lab research experience in neuroscience, a two-semester Capstone sequence, and many electives. The large selection of electives permits a student to learn about many neuroscience-related areas or to concentrate on a single area. Seminars, lectures, and laboratory research experiences are designed to give students:

  1. An understanding of the molecular, cellular, biochemical, physiological mechanisms and processes underlying nervous system functioning, behavior, and psychological processes.
  2. A fundamental understanding of the basic scientific method and many of the basic research techniques used by neuroscientists.
  3. A major that is flexible enough for students to select courses for themselves which will prepare them for entering into advanced degree programs beyond or within ECU that offer MA, MS, PhD, or MD degrees. Advanced degrees are often needed in the following career areas:

    • Academia
    • Research
    • Medicine
    • Government
    • Private Industry
  • A bachelor's degree in neuroscience may also assist in occupations where employers do not require an advanced degree but prefer college-educated individuals with good analytical and problem-solving abilities.

In so many ways the combination of psychology, biology, and chemistry courses with the foundations core of ECU, makes the neuroscience concentration a firm example of a liberal arts education. Contributing faculty are found in twelve departments within the Thomas Harriot College of Arts and Sciences, the Brody School of Medicine, the College of Allied Health, and the College of Health and Human Performance. If you are interested in proper advising towards the minor or major, then please contact Dr. Tran.

Neuroscience News -- ScienceDaily

  • Artificial intelligence that imitates children’s learning
    The computer programs used in the field of artificial intelligence (AI) are highly specialized. They can for example fly airplanes, play chess or assemble cars in controlled industrial environments. Scientists have now created an AI program that can learn how to solve problems in many different areas. The program is designed to imitate certain aspects of children’s cognitive development.
  • Statin use during hospitalization for hemorrhagic stroke associated with improved survival
    Patients who were treated with a statin in the hospital after suffering from a hemorrhagic stroke were significantly more likely to survive than those who were not, according to a study. This study was conducted by the same researchers who recently discovered that the use of cholesterol-lowering statins can improve survival in victims of ischemic stroke.
  • Compound from hops aids cognitive function in young animals
    Xanthohumol, a type of flavonoid found in hops and beer, has been shown in a new study to improve cognitive function in young mice, but not in older animals. The findings are another step toward understanding, and ultimately reducing the degradation of memory that happens with age in many mammalian species, including humans.