MENU

R. Martin (Marty) Roop, II

R. Martin (Marty) Roop, II

Professor

Postdoctoral Study, Virginia-Maryland Regional College of Veterinary Medicine
Ph.D., Virginia Polytechnic Institute and State University

Phone: 252-744-1357
Fax: 252-744-3535
Email: roopr@ecu.edu


Research

Brucella species survive and replicate in host macrophages, causing chronic infections which can produce abortion and infertility in animals and a debilitating condition known as "undulant fever" in humans. Unfortunately, the mechanisms by which the brucellae establish and maintain their long term residence in host macrophages are presently unknown. The goal of the research being performed in our laboratory is to define the roles of individual gene products in allowing these bacteria to resist the environmental stresses they encounter in host macrophages. Two particular environmental stresses that are presently the focus of research in our laboratory are exposure to reactive oxygen and nitrogen species and iron deprivation. We are also examining the role of small non-coding regulatory RNAs (sRNAs) in modulating virulence gene expression in Brucella. Results obtained from these studies will not only improve our understanding of the pathogenesis of Brucella infections, but also contribute significantly to our general knowledge concerning intracellular replication by bacterial pathogens.


Publications

Alcantara, R., R. A. Read, M. W. Valderas, T. D. Brown, and R. M. Roop II. 2004. Intact purine biosynthesis pathways are required for wild-type virulence of Brucella abortus 2308 in the BALB/c mouse model. Infect. Immun. 72:4911-4917

Gee, J. M., M. E. Kovach, V. K. Grippe, S. Hagius, J. V. Walker, P. H. Elzer, and R. M. Roop II. 2004. Role of catalase in the virulence of Brucella melitensis in pregnant goats. Vet. Microbiol. 102:111-115

Gee, J. M., M. W. Valderas, M. E. Kovach, V. K. Grippe, G. T. Robertson, W.-L. Ng, J. M. Richardson, M. E. Winkler, and R. M. Roop II. 2005. The Brucella abortus Cu/Zn superoxide dismutase (SodC) is required for optimal resistance to oxidative killing by murine macrophages and wild type virulence in experimentally infected mice. Infect. Immun. 73:2873-2880

Valderas, M. W., R. B. Alcantara, J. E. Baumgartner, B. H. Bellaire, G. T. Robertson, W.-L. Ng, J. M. Richardson, M. E. Winkler, and R. M. Roop II. 2005. Role of HdeA in acid resistance and virulence in Brucella abortus 2308. Vet. Microbiol. 107:307-12

Bellaire, B. H., R. M. Roop II, and J. A. Cardelli. 2005. Opsonized virulent Brucella abortus but not attenuated hfq or bacA mutants replicate within non-acidic, endoplasmic reticulum negative, LAMP 1 positive phagosomes in human monocytes. Infect. Immun. 73: 3702-3713

Hornback, M. L., and R. M. Roop II. 2006. The Brucella abortus xthA-1 gene product participates in base excision repair and resistance to oxidative killing but is not required for wild-type virulence in the mouse model. J. Bacteriol. 188:1295-1300

Roux, C. M., N. J. Booth, B. H. Bellaire, J. M. Gee, R. M. Roop II, M. E. Kovach, R. M. Tsolis, P. H. Elzer, and D. G. Ennis. 2006. RecA and RadA proteins of Brucella abortus do not perform overlapping protective DNA repair functions from oxidative burst. J. Bacteriol. 188: 5187-5195

Parent, M. A., R. Goenka, E. Murphy, K. LeVier, N. Carreiro, B. Golding, G. Ferguson, R. M. Roop II, G. C. Walker, and C. L. Baldwin. 2007. Brucella abortus bacA mutant induces greater pro-inflammatory cytokines than the wild-type parent strain. Microbes Infect. 9:55-62

Paulley, J. T., E. S. Anderson and R. M. Roop II. 2007. Brucella abortus requires the heme transporter BhuA for maintenance of chronic infection in BALB/c mice. Infect. Immun. 75:5248-5254

Anderson, E. S., J. T. Paulley and R. M. Roop II. 2008. The AraC-like transcriptional regulator DhbR is required for maximum expression of the 2,3-dihydroxybenzoic acid biosynthesis genes in Brucella abortus 2308 in response to iron deprivation. J. Bacteriol. 190:1838-1842

Khan, S. R., J. Gaines, R. M. Roop II, and S. K. Farrand. 2008. Broad host range expression vectors with tightly regulated promoters and their use for examining the influence of TraR and TraM expression on Ti plasmid quorum sensing. Appl. Environ. Microbiol. 74: 5053-5062

Anderson, E. S., J. T. Paulley, J. M. Gaines, M. W. Valderas, D. W. Martin, E. Menscher, T. D. Brown, C. S. Burns, and R. M. Roop II. 2009. The manganese transporter MntH is a critical virulence determinant in experimentally infected mice. Infect. Immun. 77:3466-3474

Roop, R. M. II, J. M. Gaines, E. S. Anderson, C. C. Caswell, and D. W. Martin. 2009. Survival of the fittest: how Brucella strains adapt to their intracellular niche in the host. Med. Microbiol. Immunol. 198:221-238

Sengupta, D., A. Koblansky, J. Gaines, T. Brown, A. P. West, D. Zhang, T. Nishikawa, S.-G. Park, R. M. Roop II, and S. Ghosh. 2010. Subversion of innate immune responses by Brucella through the targeted degradation of the TLR signaling adapter, MAL. J. Immunol. 184:956-964

Steele, K. H., J. E. Baumgartner, M. W. Valderas, and R. M. Roop II. 2010. A comparative study of the roles of AhpC and KatE as respiratory antioxidants in Brucella abortus 2308. J. Bacteriol. 192: 4912-4922

Anderson, E. S., J. T. Paulley, D. A. Martinson, J. M. Gaines, K. H. Steele, and R. M. Roop II. 2011. The iron responsive regulator Irr is required for wild-type expression of the gene encoding the heme transporter BhuA in Brucella abortus 2308. J. Bacteriol. 193:5359-5364

Caswell, C. C., J. M. Gaines, and R. M. Roop II. 2012. The RNA chaperone Hfq independently coordinates expression of the VirB type IV secretion system and the LuxR-type regulator BabR in Brucella abortus 2308. J. Bacteriol. 194:3-14

Menscher, E. A., C. C. Caswell, E. S. Anderson, and R. M. Roop II. 2012. Mur regulates the gene encoding the manganese transporter MntH in Brucella abortus 2308. J. Bacteriol. 194:561-566

Roop, R. M. II. 2012. Metal acquisition and virulence in Brucella. Anim. Health Res. Rev. 13:10-20

Martin, D. W., J. E. Baumgartner, J. M. Gee, E. S. Anderson, and R. M. Roop II. 2012. SodA is a major metabolic antioxidant in Brucella abortus 2308 that plays a significant, but limited, role in the virulence of this strain in the mouse model. Microbiology 158:1767-1774

Roop, R. M. II, and C. C. Caswell. 2012. Redox-responsive regulation of denitrification genes in Brucella (Micro Commentary). Mol. Microbiol. 85:5-7

Ojeda, J. F., D. Martinson, E. Menscher, and R. M. Roop II. 2012. The bhuQ gene encodes a heme oxygenase that contribute to the ability of Brucella abortus 2308 to use heme as an iron source and is regulated by Irr. J. Bacteriol. 194:4052-4058

Caswell, C. C., J. M. Gaines, P. Ciborowski, D. Smith, C. H. Borchers, C. M. Roux, K. Sayood, P. M. Dunman, and R. M. Roop II. 2012. Identification of two small regulatory RNAs linked to virulence in Brucella abortus 2308. Mol. Microbiol. 85:345-360

Caswell, C. C., J. E. Baumgartner, D. W. Martin, and R. M. Roop II. 2012. Characterization of the organic hydroperoxide resistance system of Brucella abortus 2308. J. Bacteriol. 194:5065-5072

Casswell, C. C., A. E. Elhassanny, E. E. Planchin, C. M. Roux, J. N. Gorospe-Weeks, P. M. Dunman, and R. M. Roop II. 2013. Diverse genetic regulon of the virulence-associated transcriptional regulator MucR in Brucella abortus 2308. Infect. Immun. 81:1040-1051

Kim, H.-S., C. C. Caswell, R. Foreman, R. M. Roop II, and S. Crosson. 2013. The Brucella abortus general stress response system regulates chronic mammalian infection, and is controlled by phosphorylation and proteolysis. J. Biol. Chem. 288:13906-13916

Elhassanny, A. E. M., E. S. Anderson, E. A. Menscher, and R. M. Roop II. 2013. The ferrous iron transporter FtrABCD is required for the virulence of Brucella abortus 2308 in mice. Mol. Microbiol. 88:1070-1082

Roop, R. M. II, and C. C. Caswell. 2013. Bacterial persistence: finding the “sweet spot.” Cell Host Microbe 14:119-120 

Godfroid, J., X. DeBolle, R. M. Roop II, D. O’Callaghan, R. M. Tsolis, C. Baldwin, R. L. Santos, J. McGiven, S. Olsen, I. Nymo, A. Larsen, S. Al Dahouk, and J. J. Letesson. 2014. A quest for true brucellosis One Health perspectives. ‘One Health’ – OIE Scientific Tech Rev. 33: 521-538 

Sheehan, L. M., J. A. Budnick, R. M. Roop II, and C. C. Caswell. 2015. Coordinated zinc homeostasis is essential for the wild-type virulence of Brucella abortus. J. Bacteriol. 197:1582-1591 

Saadeh, B., C. C. Caswell, Y. Chao, P. Berta, A. R. Wattam, R. M. Roop II, and D. O’Callaghan. 2015. Transcriptome-wide identification of Hfq-associated RNAs in Brucella suis by deep sequencing. J. Bacteriol. 198: 427-435 

Suárez-Esqivel, M., N. Ruiz-Villalobos, A. Castillo-Zeledón, C. Jiménez-Rojas, R. M. Roop II, D. J. Comerci, E. Barquero-Calvo,    
C. Chacón-Díaz, C. C. Caswell, K. S. Baker, E. Chaves-Olarte, N. R. Thomson, E. Moreno, J. J. Letesson, X. De Bolle, and C. Guzmán-Verri. 2016. Brucella abortus strain 2308 Wisconsin genome: importance of the definition of reference strains. Front. Microbiol. 7:e1557


Staff

Name Title Location Phone
Johnsrude, Matthew Master Student Biotech 122 252-744-3135 or
252-744-3125
Pitzer, Joshua Research Specialist Biotech 117 252-744-3135 or
252-744-3125