Implementing Volume Targeted Ventilation to Decrease Hypocarbia in ELBW Neonates During the First Week of Life

Patel S1, Driver P1, Jones L2, Brevington D2, Akpan US1
1Brody School of Medicine, East Carolina University, Greenville, NC 2Vidant Medical Center, Greenville, NC

Introduction

❖ Hypocarbia in neonates increases the risk of poor neurodevelopmental outcomes
❖ A significant cause of hypocarbia is mechanical ventilation
❖ Pressure limited ventilation, commonly used in the NICU is associated with wide swings in pCO2 levels
❖ Volume targeted ventilation (VTV) may decrease hypocarbia risk due to self-weaning properties

Setting

❖ Academic level IV NICU, 50 intensive care beds and 21 step down beds
❖ 100 ELBW neonates admitted yearly
❖ 68% of babies <30 weeks GA treated with CPAP before intubation in the delivery room
❖ CLD rates – 53.6% in babies < 30 weeks

Aim

❖ To decrease the incidence of hypocarbia (a single blood gas with pCO2 <35 mmHg) in ELBW infants during the first week of life by 50%

Measures

Outcome measure
❖ Incidence of hypocarbia

Process measures
❖ Use of VTV as initial mode of ventilation
❖ Staff education
❖ Acquisition of addition units of VTV capable ventilators

Balancing measure
❖ Rate of reintubation in the first week of life

Results

Patient characteristics and outcomes by first mode of mechanical ventilation

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>VTV (N = 61)</th>
<th>Other mode (N = 44)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestational age (weeks)</td>
<td>26 (25, 27)</td>
<td>25 (24, 26)</td>
<td>0.001</td>
</tr>
<tr>
<td>Birth weight (g)</td>
<td>800 (745, 970)</td>
<td>730 (625, 860)</td>
<td>0.008</td>
</tr>
<tr>
<td>Betamethasone complete</td>
<td>29 (49%)</td>
<td>19 (49%)</td>
<td>0.394</td>
</tr>
<tr>
<td>Age at intubation (d)</td>
<td>0 (0, 3)</td>
<td>0 (0, 2)</td>
<td>0.274</td>
</tr>
<tr>
<td>Duration of first intubation (d)</td>
<td>3 (1, 3)</td>
<td>7 (1, 7)</td>
<td>0.003</td>
</tr>
<tr>
<td>Number of gas samples in first 7 d of life</td>
<td>30 (4, 17)</td>
<td>20 (14, 29)</td>
<td><0.001</td>
</tr>
<tr>
<td>Reintubation within 7 d of life</td>
<td>22 (30%)</td>
<td>4 (9%)</td>
<td>0.001</td>
</tr>
<tr>
<td>Hypocarbia within 7 d of life</td>
<td>32 (57%)</td>
<td>30 (68%)</td>
<td>0.361</td>
</tr>
<tr>
<td>Timing of first hypocarbia episode (d)</td>
<td>0 (1, 1)</td>
<td>0 (0, 3)</td>
<td>0.372</td>
</tr>
<tr>
<td>Number of hypocarbia episodes</td>
<td>3 (0, 2)</td>
<td>1 (0, 3)</td>
<td>0.188</td>
</tr>
</tbody>
</table>

❖ Observations censored at 7 days of life. Hypocarbia was defined as pCO2 <35 mmHg.

Discussion

❖ Neonates with VTV as initial mode were larger and more mature
❖ Use of VTV was increased and maintained above goal
❖ No difference in hypocarbia in the first week of life – incidence, timing or number of episodes
❖ Shorter initial ventilation courses but higher reintubation rates for neonates on VTV
❖ Fewer blood gases needed – ventilator is self-weaning
❖ Education and multi-disciplinary input crucial to achieving and maintaining goal

Key drivers

Primary drivers
❖ VTV as initial mode of ventilation
❖ Provider education and awareness
❖ Unit culture

Secondary drivers
❖ Available units of VTV capable ventilators
❖ Means of disseminating information and results
❖ Multi-disciplinary involvement in decision making
❖ Availability and use of ventilator policy

Change cycles

PDSA 1 Literature review
Collection of baseline data and identification of drivers and selection of measures

PDSA 2 Education of staff
Implementation of intervention

PDSA 3 Strategic reserving of VTV capable ventilators

PDSA 4 Survey of staff to assess attitudes and identify problems

PDSA 5 Re-education of staff

PDSA 6 Additional ventilators purchased

References

❖ Brown MK, Dibbell RM. Mechanical ventilation of the premature neonate. Respir Care. 2011;56:1286-1291