Module 2

Biosafety
Biohazard

An agent of biological origin that has the capacity to produce deleterious effects on humans, i.e. microorganisms, toxins and allergens derived from those organisms; and allergens and toxins derived from higher plants and animals.
Introduction
Development of Biosafety Practices

- 1941 - Meyer and Eddie
 - 74 lab associated brucellosis infections in US
- 1949 - Sulkin and Pike
 - 222 viral infections (21 fatal)
 - Only 27% related to known accidents
Introduction
Development of Biosafety Practices

- 1951, 1965, 1976 - Sulkin and Pike
 - Surveys for lab-associated infections
 - More than 5,000 labs
 - Cumulative total of 3,921 cases cited
 - Most commonly reported:
 - Hepatitis
 - Tuberculosis
 - Typhoid
 - Venezuelan Equine Encephalitis
 - Brucellosis
 - Tularemia
Introduction
Development of Biosafety Practices

1951, 1965, 1976 - Sulkin and Pike
- Fewer than 20% associated with known accidents
- Exposure to infectious aerosols plausible (but unconfirmed) for >80% of reported cases
Introduction

Why Biosafety Practices?

Protection:
- workers
- “products”
- co-workers
- lab support personnel
- environment
Principles

General Lab Requirements

- Knowledgeable supervisor
- Knowledgeable personnel
 - Aware of potential hazards
 - Proficient in practices & techniques
- Lab specific biosafety manual
Principles

General Lab Requirements

- Biosafety Levels (BSLs)
- Laboratory Practice and Technique
 - Standard Practices
 - Special Practices
- Safety Equipment (Primary Barriers)
- Facility Design and Construction (Secondary Barriers)
Principles

General Lab Requirements

- Biosafety cabinets (BSCs) - BSL 2/3
- Personal protective clothing
 - Gloves
 - Gowns
 - Eye and face protection
- Pipetting Devices
- Safety centrifuge cups and rotors
Biosafety

The application of combinations of laboratory practice and procedure, laboratory facilities, and safety equipment when working with potentially infectious microorganisms.
Principles

Biosafety Levels

- **BSL1** - agents not known to cause disease.
- **BSL2** - agents associated with human disease.
- **BSL3** - indigenous/exotic agents associated with human disease and with potential for aerosol transmission.
- **BSL4** - dangerous/exotic agents of life threatening nature.
Suitable for work involving well-characterized agents *not known to cause disease in healthy adult humans and of minimal potential hazard* to laboratory personnel and the environment.
Biosafety Level 1

Introduction

Examples:

- *Bacillus subtilis*
- *Naegleria gruberi*
- *Infectious canine hepatitis virus*
- *E. coli*
Biosafety Level 1
Facility Design (Secondary Barrier)
Biosafety Level 1
Facility Design (Secondary Barrier)

Requirements:

- Laboratories have doors
- Sink for hand washing
- Work surfaces easily cleaned
- Bench tops are impervious to water
- Sturdy furniture
- Windows fitted with flyscreens
Biosafety Level 1
Facility Design (Secondary Barrier)

Easily cleaned and decontaminated
Biosafety Level 1
Facility Construction (Secondary Barrier)

Requirements:

- **Location** - not separated
- **Structure** - normal construction
- **Ventilation** - none
Biosafety Level 1
Standard Microbiological Practices

- Restrict or limit access when working
- Prohibit eating, drinking and smoking
- Prohibit mouth pipetting
Biosafety Level 1
Standard Microbiological Practices

Use mechanical pipetting devices
Biosafety Level 1
Standard Microbiological Practices

Wash hands
Biosafety Level 1
Standard Microbiological Practices

- Minimize splashes and aerosols
- Decontaminate work surfaces daily
- Decontaminate wastes
- Maintain insect & rodent control program
Biosafety Level 1
Safety Equipment (Primary Barriers)

Protective clothing
- Lab coat
- Gloves
Biosafety Level 1
Safety Equipment (Primary Barriers)

Personal protective equipment

- **Face protection**
- **Eye protection**
None required
Biosafety Level 1

Training Requirements

- **Supervisor**
 - Scientist with general training in microbiology or related science

- **Lab Personnel**
 - Specific training in lab procedures
Suitable for work involving *agents of moderate potential hazard* to personnel and the environment.
Biosafety Level 2

Introduction

Examples:
- *Measles virus*
- *Salmonellae*
- *Toxoplasma spp.*
- *Hepatitis B virus*

* Immunization or antibiotic treatment is available
Examples:

- Bloodborne pathogens
- Human body fluids/particularly when visibly contaminated with blood

* Extreme precaution with contaminated needles or sharp instruments
Biosafety Level 2
Facility Design (Secondary Barriers)
Biosafety Level 2
Facility Design (Secondary Barriers)

Requirements:

- **Laboratories have lockable doors**
- **Sink for hand washing**
- **Work surfaces easily cleaned**
- **Bench tops are impervious to water**
- **Sturdy furniture**
Requirements (cont.):

- Biological safety cabinets installed as needed
- Adequate illumination
- Eyewash readily available
- Air flows into lab without re-circulation to non-lab areas
- Windows fitted with flyscreens
Biosafety Level 2
Facility Design (Secondary Barrier)

Restricted access when work in progress
Biosafety Level 2

Laboratory Facilities (Secondary Barriers)

- **BSL-1 Facilities PLUS:**
 - Autoclave available
 - Eyewash station available
Biosafety Level 2
Facility Construction (Secondary Barrier)

Requirements:

- Location - separated from public areas
- Structure - normal construction
- Ventilation - directional
Biosafety Level 2
Standard Microbiological Practices

As in BSL-1
In addition to BSL-1:

- Use biosafety cabinets (class II) for work with infectious agents involving:
 - Aerosols and splashes
 - Large volumes
 - High concentrations
Biosafety Level 2

Safety Equipment (Primary Barriers)

- Class II Biosafety Cabinet
 - Airflow
Biosafety Level 2
Safety Equipment (Primary Barriers)

- Class II Biosafety Cabinet
 - Equipment layout
Biosafety Level 2
Safety Equipment (Primary Barriers)

- Class II Biosafety Cabinet
 - Technique
Biosafety Level 2

Special Practices

Supervision

- Supervisor is a competent scientist with increased responsibilities
 - Limits access if immunocompromised
 - Restricts access to immunized

Lab Personnel

- Aware of potential hazards
- Proficient in practices/techniques
Biosafety Level 2
Special Practices

Needles & Sharps Precautions

- *Use sharps containers*
- *DON’T break, bend, re-sheath or reuse syringes or needles*
Needles & Sharps Precautions (cont.)

- DON’T place needles or sharps in office waste containers
Biosafety Level 2
Special Practices

Needles and Sharps Precautions (cont.)

- *DON’T touch broken glass with hands*
Needles and Sharps Precautions (cont.)

- *Use plasticware*
Biosafety Level 2

Special Practices

- Policies and procedures for entry
- Biohazard warning signs
- Biosafety manual specific to lab
- Training with annual updates
Use leak-proof transport containers
Biosafety Level 2
Special Practices

- Immunizations
- Baseline serum samples
Biosafety Level 2

Special Practices

- Decontaminate work surfaces
- Report spills and accidents
- No animals in laboratories
Biosafety Level 3

Introduction

Suitable for work with infectious agents which *may cause serious or potentially lethal disease* as a result of exposure by the inhalation route.
Exposure potential to pathogens spread by aerosol

Infection serious, possibly lethal

Examples:

- *M. tuberculosis*
- *St. Louis encephalitis virus*
- *Coxiella burnetii*
Biosafety Level 3
Laboratory Facilities (Secondary Barriers)
Biosafety Level 3
Laboratory Facilities (Secondary Barriers)

- BSL-1 and 2 Facilities PLUS:
 - Separate building or isolated zone
 - Double door entry
 - Directional inward airflow
 - Single-pass air; 10-12 air changes/hour
Biosafety Level 3

Laboratory Facilities (Secondary Barriers)

- BSL-1 and 2 Facilities PLUS (cont.):
 - Enclosures for aerosol generating equipment
 - Room penetrations sealed
 - Walls, floors and ceilings are water resistant for easy cleaning
Biosafety Level 3
Laboratory Facilities (Secondary Barriers)

- BSL-1 and 2 Facilities PLUS:
 - Vacuum lines protected with liquid disinfectant traps or HEPA filters
Facility Design
(Tertiary Barriers)

CDC
Containment Laboratory

BSL 3
BSL 4
Facility Design
(Tertiary Barriers)

- Lab structure
- Lab ventilation
Biosafety Level 3
Standard Microbiological Practices

As in BSL - 1 and - 2
Biosafety Level 3
Safety Equipment (Primary Barriers)

- BSL-1 and 2 Safety Equipment PLUS:
 - BSC class II or III to manipulate infectious material
Biosafety Level 3
Safety Equipment (Primary Barriers)

- BSL-1 and 2 Safety Equipment PLUS:
 - Respiratory protection may be indicated
BSL-2 Special Practices PLUS:

- Work in certified BSC
- Use bioaerosol-containing equipment
- Decontaminate spills promptly
Biosafety Level 3
Special Practices

Supervision

- Supervisor is a competent scientist experienced working with agents
 - Establishes criteria for entry
 - Restricts access
 - Develops policies/procedures
 - Trains lab personnel
Lab Personnel

- *Strictly follow guidelines*
- *Demonstrate proficiency*
- *Receive appropriate training*
- *Report incidents*
- *Participate in medical surveillance*
Suitable for work with dangerous and exotic agents that *pose a high individual risk of aerosol-transmitted laboratory infections and life-threatening disease.*
Biosafety Level 4

Introduction

- Exposure potential to pathogens spread by aerosol or with unknown risk of transmission
- Infection possibly lethal
- Examples:
 - Ebola Zaire
 - Sin Nombre virus
 - Rift Valley Fever
Biosafety Level 4
Laboratory Facilities (Secondary Barriers)
Biosafety Level 4
Laboratory Facilities (Secondary Barriers)

- BSL-1, 2, and 3 Facilities PLUS:
 - Separate building or isolated zone
 - Double door entry
 - Directional inward airflow
 - Single-pass air
 - Dedicated supply and exhaust, vacuum, and decon systems
Biosafety Level 4

Laboratory Facilities (Secondary Barriers)

- BSL-1, 2 and 3 Facilities PLUS (cont.):
 - Enclosures for aerosol generating equipment
 - Double door autoclaves
 - Room penetrations sealed
 - Walls, floors and ceilings are sealed to form an internal seal
BSL-1, 2 and 3 Facilities PLUS (cont.):

- Connecting inner and outer doors - interlocked to prevent simultaneous opening
- Liquid effluents are decontaminated by an approved method and certified before discharge
- Communication system between inside and outside of the lab
Biosafety Level 4
Laboratory Facilities (Secondary Barriers)

- BSL 1, 2, and 3 Facilities PLUS:
 - *Emergency breathing air*
 - *Emergency generator*
 - *Emergency exit*
As in BSL 1, 2, and 3
Biosafety Level 4
Safety Equipment (Primary Barriers)

- BSL 1, 2, and 3 Safety Equipment PLUS:
 - *Class II (B2) or III biological safety cabinets to manipulate infectious material*
Biosafety Level 4
Safety Equipment (Primary Barriers)

- BSL 1, 2, and 3 Safety Equipment PLUS:
 - Positive pressure personnel suit
Biosafety Level 4
Special Practices

- BSL 3 Special Practices PLUS:
 - Decontaminate all liquid effluent
 - Decontaminate all solid wastes
Biosafety Level 4
Special Practices

- Controlled access
- Personnel enter facility through changing room where they are required to change into laboratory clothing
- Showers are required upon exit from the laboratory
- Supplies enter lab through double-door autoclave or fumigation chamber
Supervision

- Supervisor is a competent scientist trained and experienced working with agents
 - Establishes criteria for entry
 - Restricts access
 - Develops policies/procedures
 - Trains lab personnel
Biosafety Level 4
Special Practices

Lab Personnel

- Strictly follow guidelines
- Demonstrate proficiency
- Receive appropriate training
- Report incidents
- Receive available immunizations
- Participate in medical surveillance
Principles of Biosafety

Summary

- BSL 1 - 4
 - Standard Practices
 - Special Practices
 - Safety Equipment (Primary Barriers)
 - Laboratory Facilities (Secondary Barriers)
 - Building (Tertiary Barriers)
Biological Safety Cabinets
Biological Safety Cabinets

Purpose

- Product protection
- Personal protection
- Environmental protection
Biological Safety Cabinets

Types

A. Class I
- inward airflow protects worker
- exhaust to outside (w/wo HEPA filter)

B. Class II
- worker, product, environmental protection
- “sterile” work area
- use for work with aerosol-transmissible microorganisms
- use also for tissue culture/virology

C. Class III
- totally enclosed, ventilated, air-tight
- suitable for work with BSL3/4 agents
Biological Safety Cabinets

Types

Class II

- **Type A** 30% exhausted to room
- **Type B3** 30% exhausted to outside
- **Type B1** 70% exhausted to outside
- **Type B2** 100% exhausted to outside
HEPA Filter

- “High efficiency particulate air” filter
- *Traps* particulates only; chemicals, fumes, vapors pass through
- *Traps* particulates 0.3μ
Biological Safety Cabinets

Component

HEPA Filter

- **Metal or wood framed**
- **Continuous sheet of flat filter medium with aluminum separators**
- **Gasket sealed**
- **Adhesive bond between filter pack and frame**
Biological Safety Cabinets

Operating Location

- Isolated from other work areas
- Removed from high traffic areas
- Away from airflow ducts
- Away from laboratory entry doors
Biological Safety Cabinets

Airflow

Typical Class II

- Exhaust
- Intake 100 ft/min
1. Load BSC with all needed supplies.
2. Turn BSC on and allow to run for 10-15 minutes.
3. Check inward airflow with a piece of tissue.
4. Enter straight into cabinet and perform work in a slow, methodical manner.
5. At end of work, decontaminate all items to be taken out of cabinet.
6. Decontaminate interior of BSC.
7. Allow cabinet to run for 10-15 minutes.
8. Shut off.
Biological Safety Cabinets

Safe Operation

- Always enter straight into cabinet - no sweeping motions
- Place materials well within the cabinet - not on front grill
- Place discard pan within cabinet
- Watch for disruptions of laminar air flow
- Decontaminate materials before removal from cabinet
Biological Safety Cabinets

Safe Operation

- Not designed for chemical use
- May use for non-volatile toxic chemicals or low-level radioactive materials
- May use for “minute” amounts of volatile chemicals
- Ensure annual certification
- Place all work materials into cabinet before starting
CAUTIONS

- *Chemicals may damage HEPA filter*
 - Exposure risk - chemical/infectious agents
- *Volatile chemicals NOT retained by HEPA filter*
 - Exposes personnel if not exhausted
- *BSC fans NOT spark proof*
 - Chemical use may result in fire/ explosion
 - Never use NFPA 4 flammables
Centrifuges
Centrifuges

<table>
<thead>
<tr>
<th>Types</th>
<th>Speeds (rpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcentrifuges</td>
<td>~15,000</td>
</tr>
<tr>
<td>Low/high speed</td>
<td>2,000 – 20,000</td>
</tr>
<tr>
<td>Ultracentrifuges</td>
<td>~120,000</td>
</tr>
</tbody>
</table>
Centrifuges

Hazards

- Mechanical failure of machine
- Lab equipment failure (tubes etc.)
- Aerosol generation
- Operator error
1. Check tubes for cracks/chips.
2. Use matched sets of tubes, buckets etc.
3. Tightly seal all tubes and safety cups.
4. Ensure that rotor is locked to spindle and bucket seated.
5. Close lid during operation.
6. Allow to come to complete stop before opening.
Use safety cups whenever possible
Disinfect weekly and after all spills or breakage's
Lubricate O-rings and rotor threads weekly
Do not use rotors that have been dropped
Contact your centrifuge rep for specific information
Shipping Biological Specimens
Shipping Biological Specimens

Guideline Documents

- Recommendations of the United Nations Committee on Dangerous Goods
Shipping Biological Specimens

- **PHS:** 42 CFR Part 72.
- **DOT:** 49 CFR Part 171-178
- **USPS:** Domestic Mail Manual
- **IATA:** International Air Transport Association
- **ICAO:** International Civil Aviation Organization
Definition

- Contains or has high probability of containing an infectious material...known or reasonably believed to cause disease in humans or animals
 - *virus, prion, genetic elements*
 - *bacterium, rickettsia, parasite, fungus*
- Contains a microbial toxin known to be pathogenic
Shipping Biological Specimens

Infectious Substance

Packaging

- Primary Container
 - Positive seal
- Absorbent material
Shipping Biological Specimens

Infectious Substance

Packaging

- Secondary packaging
- Watertight/leakproof
Shipping Biological Specimens

Infectious Substance

Packaging

- Between Secondary and Outer Container
 - List of Contents
 - Shippers label
 - Name
 - Address
 - Phone number
Shipping Biological Specimens

Infectious Substance

Packaging

- Outer container
Shipping Biological Specimens

Infectious Substance

Packaging

- Performance tests
 - 49 CFR 178.609

Package shall not leak
Shipping Biological Specimens
Infectious Substance

Packaging label

INFECTIONOUS SUBSTANCE
IN CASE OF DAMAGE OR LEAKAGE
IMMEDIATELY NOTIFY
PUBLIC HEALTH AUTHORITY

IN U.S.A.
NOTIFY DIRECTOR - CDC
ATLANTA, GA
1-800-232-0124

6
Shipping Biological Specimens
Infectious Substance

Containers
Shipping Biological Specimens

Clinical Specimen

Definition

Human or animal material...collected for the purpose of diagnosis or research....not known to contain viable infectious agents
Shipping Biological Specimens

Clinical Specimen

Packaging

- Primary receptacle
- Positive seal
- Biohazard label
- Absorbent material
Shipping Biological Specimens

Clinical Specimen

Packaging

- Between the secondary and outer packaging
- *List of contents*
Shipping Biological Specimens

Clinical Specimen

Packaging

- Outer packaging
Shipping Biological Specimens

Clinical Specimen

Package Label

CLINICAL SPECIMENS
BIOHAZARD
Packaged in Compliance with 42 CFR Part 72
IN CASE OF DAMAGE OR LEAKAGE, NOTIFY CENTERS FOR DISEASE CONTROL
(404) 633-5313

Standard Form 420 A-1 [8-89]
Prescribed by Dept. HHS [42 CFR 72]
420-301
Shipping Biological Specimens

Clinical Specimen

Packaging

- Performance test

Package shall not leak
Biosafety Manuals

Components

- Biosafety Level Descriptions
 - Standard Practices & Principles
 - Special Practices & Procedures
 - Containment Devices
 - Facility Design
- Animal Safety Practices
- Agent Summary Statements
Biosafety Manuals

Components

- Equipment Descriptions
- Specimen Handling
- Security
- Waste
- Special Lab Practices
 - Tissue culture
 - Toxins
Decontamination
Decontamination

Definition

Sterilization

The use of a physical or chemical procedure to destroy all microbial life, including large numbers of highly resistant bacterial spores.
Disinfection

The use of a physical or chemical procedure to virtually eliminate all recognized pathogenic microorganisms but not all microbial forms (bacterial endospores) on inanimate objects.
Antisepsis

A germicide that is used on skin or living tissue for the purpose of inhibiting or destroying microorganisms.
Decontamination
Agent Selection

- Degree of microbial killing required
- Nature of item/surface to be treated
- Ease of use
- Safety
- Cost
Decontamination
Agent Efficacy

- Type of organism
- Number of organisms
- Amount of organic material present
- Type & configuration of material to be treated
- Type & concentration of germicide
- Time and temperature or exposure
- pH
- Humidity
Decontamination Methods

- Heat
- Chemical
- Radiation
Decontamination

Heat

- Types
 - Moist – steam
 - Dry
 - Incineration

The most effective method of sterilization
Steam sterilization practices

- Ensure proper functioning of autoclave
- Vessels should not be capped or plugged
- Large loads require longer contact time
- Excessive amounts of liquid should not be added to load
Steam sterilization verification
- Direct assay
- Thermocouples
- Chemical indicators
- Biological indicators (*Bacillus stearothermophilis*)
Dry heat sterilization

- Denaturation of proteins: $160^0 - 170^0$ C/2-4 hours
- Effective on impervious non-organic materials like glass
Incineration

- *Method of choice for animal carcasses*
- *Requires certified incinerator*
Decontamination
Chemical

- **Types**
 - **Liquids**, *i.e.* chlorox, hydrogen peroxide
 - **Gases**, *i.e.* ethylene oxide
Agent selection - complexity

- Over 14,000 registered products
- Over 300 active ingredients
- 14 ingredients present in 92% of products
Agent selection - activity

- HLD – high level disinfection
- ILD – intermediate level disinfection
- LLD – low level disinfection
High level disinfection - sporocides

- Kills all microorganisms except high numbers of bacterial spores
- Require 5-10 min. exposure
- Examples: aldehydes, hydrogen peroxide, paracetic acid
Intermediate level disinfection - tuberculocides

- **Kills** *M. tuberculosis* var. *bovis* and all vegetative bacteria, fungi, and most viruses
- **Require minimum 20 min. exposure**
- **Examples:** phenolics, iodophores, chlorine compounds, alcohols
Decontamination

Chemical

- **Low level disinfection – hospital germicides used for housekeeping**
 - *Kills most vegetative bacteria and some fungi, but not M. tuberculosis var. bovis*
 - *Require minimum 20 min. exposure*
 - *Examples: quartenary ammonium compounds*
Decontamination

Summary

Bacterial Spores
- *B. subtilis*

Mycobacterium
- *MTB var. bovis*

Non-lipid Viruses
- *Polio-
- Rhino-

Fungi
- *Cryptococcus sp,
- Candida sp.

Vegetative Bacteria
- *Pseudomonas sp.
- Staphylococcus sp.
- Salmonella sp.

Lipid Viruses
- *Herpes
- CMV
- HBV
- HIV*
Decontamination

Chemical

- **General Lab Use - Hypochlorite Solutions**
 - **Large Spills/Large Organic Load**
 - undiluted from bottle
 - **Small Spills/Virus Inactivation**
 - 10% - 1:9
 - **General Surface Disinfection**
 - 1% - 1:99
Decontamination

Disinfectants do not replace standard microbiological practices or good hygiene!
Biological Waste
Biological Waste

Types

- cultures, stocks, isolates
- materials containing or contaminated with blood
- sharps
- pipettes, wrappers, tips
- All materials used in the lab
Biological Waste

Disposal

- puncture-proof, leak-proof, sealable receptacles
- avoid over-filling
- dispose properly
Biological Waste

Disposal
- *Never* place lab waste into office waste containers
- *Place sharps into* “sharps” *container*
- *Line discard containers with autoclave bag*
- *Decontaminate discard pans before they leave the lab:*
 1. Disinfect outside
 2. Label
 3. Tape ends with autoclave
 4. Tape
 5. Secure for transport to autoclave
Biological Waste

Decontamination

- To render the object/material safe by reducing or removing the bioburden

Methods

- chemical ... match, contact time
- physical ... Heat, steam and pressure
- incineration
- other choices, i.e. shredding + chemical
Medical Surveillance
Medical Surveillance

Criteria

- Based on risk assessment
- Pre-placement
 - evaluate physical requirements
- Periodic review
Medical Surveillance

Risk Assessment

- The probability of infection
- Implies an estimate of numbers exists
- Predict an outcome given similar events
Medical Surveillance
Risk Assessment

- What is the natural host?
- Does agent cross species barriers?
- Wild-type agent or attenuated?
- Infectious for normal healthy adult?
- What if adult is immunocompromised?
Medical Surveillance
Risk Assessment

- Mode of transmission?
 - contact
 - fomites
 - mucous membrane exposure
 - ingestion
 - inoculation or insect bites
 - inhalation
 - sex
Medical Surveillance

Risk Assessment

- Volume being manipulated?
- Concentration of agent?
- Infectious dose?
- Past history of lab-associated infection?
- Secondary spread in community?
Medical Surveillance

Risk Assessment

- Prophylaxis
 - Immunizations available?
 - Pharmaceuticals?
 - Effectiveness?

- Post-Exposure
 - Anti-microbial agents?
 - Pharmaceuticals?
 - Effectiveness?
Dealing with an unknown agent?

- epidemiological data
- patterns parallel to other agents
- data from animal studies
- route of infection
Medical Surveillance

Risk Management

- Top management
 - overall safety policy
 - resource allocation

- Supervisor
 - implement policies
 - training, practices & procedures, access

- Workers
 - strict & rigorous attention to details of practices and procedures
 - report incidents and exposures
Medical Surveillance
Risk Management

- Occupational Health Clinic
- Immunizations, chemotherapy
- Medical surveillance programs
- Incident (emergency) response
- Incident investigation
Emergency Response

Personal Contamination

1. Alert co-workers
2. Clean exposed surface with soap/water, eyewash (eyes), or saline (mouth)
3. Apply first aid and treat as an emergency
4. Notify supervisor or security desk (after hours)
5. Report to medical clinic for treatment/counseling
Emergency Response
Surface Contamination

1. Alert co-workers
2. Define/isolate contaminated area
3. Put on appropriate PPE
4. Remove glass/lumps with forceps or scoop
5. Apply absorbent towel(s) to spill; remove bulk & reapply if needed
6. Apply disinfectant to towel surface
 6. Allow adequate contact time (20”)
8. Remove towel, mop up; clean with alcohol or soap/water
9. Properly dispose of materials
10. Notify supervisor