ElizabethAbles

Elizabeth Ables

Title: Assistant Professor
Area of Study: Cell Biology, Developmental Biology
Phone: 252-328-9770
Fax: 252-328-4178
E-mail: ablese@ecu.edu
Lab: Science & Technology 575, 252-737-4763
Office: Science & Technology 533
Address: East Carolina University
Department of Biology
Mailstop 551
Greenville, NC 27858

Education:

B.S., St. Andrews Presbyterian College, 1999
M.S., University of North Carolina at Wilmington, 2001
Ph.D., Vanderbilt University, 2007
Post-Doctoral Training, Johns Hopkins University, 2012
Connect with Us

Facebook  Twitter  linkedin

Lab Website:

http://blog.ecu.edu/sites/ablese/

Research Interests:

My research seeks to understand a fundamental question in stem cell biology:how do adult stem cells sense and respond to changes in whole-body physiology? To meet changing physiological demand, stem cells are particularly dependent upon organismal nutrient sensing systems to balance their unique properties of self-renewal and the production of specialized progeny, allowing for the replacement of cells lost by attrition, regeneration, repair, or remodeling. Stem cell proliferation rates and maintenance of stem cell population size are therefore tightly controlled by the integration of signals from the local environment (or niche) and systemic signals, such as steroid hormones, which fluctuate in response to nutrient intake and other physiological inputs. While many studies have investigated the regulation of stem cells by local signaling pathways, we are only beginning to ascertain the impact of systemic signals on stem cell function. The Drosophila melanogaster ovary, a well-described stem cell-based tissue that responds to external stimuli, is a powerful model system to study the molecular mechanisms controlling stem cell activity in vivo. My long-term research goal is to understand how hormone signaling regulates adult stem cell activity in response to changes in physiological demand. Using well-characterized stem cell populations in Drosophila as models, I take genetic and cell biological approaches to assess in vivo the pivotal role of steroid hormones and their receptors in controlling tissue-specific stem cell behavior.

Prospective Students:

I am currently looking for highly motivated students, eager to learn research skills in genetics, molecular biology, cell biology, and microscopy, to join my research team. If you are interested in obtaining undergraduate research experience or in pursuing graduate education in the Biology Department, please contact me via email to discuss available opportunities.

Publications:

T. D. Hinnant, A. A. Alvarez, and E. T. Ables (2017). Temporal remodeling of the cell cycle accompanies differentiation in the Drosophila germline. Developmental Biology, 429(1):118-131.  

A. J. Blake, D. S. Finger, V. L. Hardy, and E. T. Ables (2017). RNAi-based techniques for the analysis of gene function in Drosophila germline stem cells. Methods in Molecular Biology, 1622:161-184. 

E. T. Ables* and D. Drummond-Barbosa* (2017). Steroid hormones and the physiological regulation of tissue-resident stem cells: lessons from the Drosophila ovary. Current Stem Cell Reports, 3(1):9-18. *Co-corresponding authors 

A. W. Holt, W. E. Howard, E. T. Ables, S. M. George, C. Kukoly, J. E. Rabidou, J. T. Francisco, A. N. Chukwu, and D. A. Tulis (2017). Making the cut: innovative methods for optimizing perfusion based migration assays. Cytometry A, 91(3):270-280. 

E. T. Ables*, G. H. Hwang, D. S. Finger, T. D. Hinnant, and D. Drummond-Barbosa* (2016). A genetic mosaic screen reveals ecdysone-responsive genes regulating Drosophila oogenesis. G3: Genes Genomes Genetics, 6(8):2629-2642. *Co-corresponding authors 

M. C. Reubens, M. D. Biller, S. E. Bedsole, L. T. Hopkins, E. T. Ables*, and T. W. Christensen* (2015). Mcm10is required for oogenesis and early embryogenesis in Drosophila. Mechanisms of Development, 138(Pt 3):291-299. *Co-corresponding authors 

E. T. Ables, K. E. Bois, C. A. Garcia, and D. Drummond-Barbosa (2015). Ecdysone response gene E78 controls ovarian germline stem cell niche formation and follicle survival in Drosophila. Developmental Biology 400(1):33-42. 

E. T. Ables (2015). Drosophila oocytes as a model for understanding meiosis: An Educational Primer to accompany “Corolla is a novel protein that contributes to the architecture of the synaptonemal complex of Drosophila.” Genetics, 199(1):17-23. 

E. T. Ables and D. Drummond-Barbosa (2013). Cyclin E controls Drosophila female germline stem cell maintenance independently of its role in proliferation by modulating responsiveness to niche signals.Development, 140(3):530-540.  

E. T. Ables and D. Drummond-Barbosa (2013). Development, 140:530-540. In vivo control of adult stem cells by a dynamic physiological environment: diet-dependent systemic factors in Drosophila and beyond. E. T. Ables, K. M. Laws, and D. Drummond-Barbosa. Wiley Interdisciplinary Reviews Developmental Biology (2012), 1: 657-674, doi: 10.1002/wdev.48. 

E. T. Ables, K. M. Laws, and D. Drummond-Barbosa (2012). Control of adult stem cells in vivo by a dynamic physiological environment: diet-dependent systemic factors in Drosophila and beyond. Wiley Interdisciplinary Reviews Developmental Biology, 1(5):657-674. 

E. T. Ables and D. Drummond-Barbosa (2011). Food for thought: neural stem cells on a diet. Cell Stem Cell, 8(4):352-354.  

E. T. Ables and D. Drummond-Barbosa (2011).  Food for thought: neural stem cells on a diet. Cell Stem Cell, 8 (4):352.

E. T. Ables and D. Drummond-Barbosa (2010). The steroid hormone ecdysone functions with intrinsic chromatin remodeling factors to control female germline stem cells in Drosophila. Cell Stem Cell, 7(5):581-592.Cyclin E controls Drosophila female germline stem cell maintenance independently of its role in proliferation by modulating responsiveness to niche signals. 

E. T. Ables and D. Drummond-Barbosa (2010).The steroid hormone ecdysone functions with intrinsic chromatin remodeling factors to control female germline stem cells in Drosophila. Cell Stem Cell, 7 (5):581.

H. Zhang*, E. T. Ables*, C. F. Pope, M. K. Washington, S. Hipkens, A. Means, G. Path, J. Seufert, R. H. Costa, A. B. Leiter, M. A. Magnuson, and M. Gannon (2009). Multiple, temporal-specific roles for HNF6 in pancreatic endocrine and ductal differentiation. Mechanisms of Development, 126 (11-12):958. *Both authors contributed equally to this work.

L. W. Crawford,* E. T. Ables*, Y. A. Oh, B. Boone, S. Levy, and M. Gannon (2008). Gene expression profiling of a mouse model of pancreatic islet dysmorphogenesis.  Public Library of Science ONE, 3 (2):e1161. *Both authors contributed equally to this work.

M. Gannon, E. T. Ables, L. Crawford, D. Lowe, M. F. Offield, M. A. Magnuson, and C. V. E. Wright (2008). pdx1function is specifically required in embryonic cells to generate appropriate numbers of endocrine cell types and maintain glucose homeostasis.  Developmental Biology, 314 (2):406.

E. Tweedie**, I. Artner, L. Crawford, G. Poffenberger, B. Thorens, R. Stein, A. C. Powers, and M. Gannon (2006). Maintenance of Hnf6 in postnatal islets impairs terminal differentiation and function of cells.Diabetes, 55 (12):3264. **Ables maiden name.

E. P. Tweedie**, F. E. Coblentz, and T. H. Shafer (2004). Purification of a soluble glycoprotein from the uncalcified ecdysial cuticle of the blue crab Callinectes sapidus and its possible role in initial mineralization.Journal of Experimental Biology, 207 (Pt 15):2589. **Ables maiden name.

Courses Taught:

Cell Biology